Home > People > Faculty > Associate Professor > Content Associate Professor

Genqiang Liu

NameGenqiang Liu

TitleAssociate Professor

OfficeSchool of mathematics and statistics, the first floor of the annex building.

Email liugenqiangbnu@126.com,  liugenqiang@henu.edu.cn,

Research FieldRepresentations of Lie algebras and associative algebras


2009.09-2012.06, Ph.D. Institute of mathematics, Chinese Academy of Sciences

2005.09-2008.06, Master of Science, Beijing Normal University

2001.09-2005.07, Bachelor of Science, Henan Normal University


2012.7-   Henan UniversityAssociate professor

Selected publications

[21]. Liu Genqiang, Zhao Kaiming*, The category of weight modules for sympelctic oscillator Lie algebas,Transformation Groups,(2021),1-20.

[20]. Liu Genqiang, Li, Yang*, Wang KekeIrreducible weight modules over the Schrödinger Lie algebra in (n+1) dimensional space-timeJournal of Algebra 575,(2021), 1-13.

[19]. Liu Genqiang, Li Yang*BGG category for the quantum Schrödinger algebra, Glasgow Mathematical Journal,63(2021),266 - 279.

[18]. Niu Mengnan, Liu Genqiang*,Irreducible jet modules for the vector field Lie algebra on S1×C,Communications in Algebra,49(2021),2091-2100.

[17]. Guo Xiangqian , Liu Genqiang , Lu Rencai, Zhao, Kaiming*,Simple Witt Modules that are Finitely Generated over the Cartan Subalgebra,Moscow Mathematical Journal,20(2020),43-65.

[16]. Brešar, Matej; Guo, Xiangqian; Liu, Genqiang; Lü, Rencai*; Zhao, Kaiming; Zero product determined Lie algebras. Eur. J. Math. 5 (2019), no. 2, 424453.

[15]. Guo, Xiangqian; Liu, Genqiang*; Jet modules for the centerless Virasoro-like algebra. J. Algebra Appl. 18 (2019), no. 1, 1950002, 24 pp.

[14]. Liu, Genqiang; Lu, Rencai*; Zhao, Kaiming; Irreducible Witt modules from Weyl modules and gln-modules. J. Algebra 511 (2018), 164181.

[13]. Liu, Genqiang*; Li, Yang; Wang, Yihan; Localization of highest weight modules of a class of extended affine Lie algebras. J. Geom. Phys. 129 (2018), 208216.

[12]. Cai, Yan-an; Liu, Genqiang; Nilsson, Jonathan; Zhao, Kaiming*; Generalized Verma modules over sln+2 induced from U(hn)-free sln+1-modules. J. Algebra 502 (2018), 146162.

[11]. Futorny, Vyacheslav; Liu, Genqiang; Lu, Rencai; Zhao, Kaiming*; New families of irreducible weight modules over sl3. J. Algebra 501 (2018), 458472.

[10]. Liu, Genqiang*; Zhao, Yueqiang; Generalized polynomial modules over the Virasoro algebra. Proc. Amer. Math. Soc. 144 (2016), no. 12, 51035112.

[9]. Liu, Genqiang*; Zhao, Yueqiang; Irreducible A(1)1-modules from modules over two-dimensional non-abelian Lie algebra. Front. Math. China 11 (2016), no. 2, 353363.

[8]. Liu, Genqiang; Zhao, Kaiming*; Classification of irreducible bounded weight modules over the derivation Lie algebras of quantum tori. Linear Algebra Appl. 495 (2016), 1123.

[7]. Liu, Genqiang*; Zhao, Kaiming; New irreducible weight modules over Witt algebras with infinite-dimensional weight spaces. Bull. Lond. Math. Soc. 47 (2015), no. 5, 789795.

[6]. Liu, Genqiang; Lu, Rencai*; Zhao, Kaiming; A class of simple weight Virasoro modules. J. Algebra 424 (2015), 506521.

[5]. Liu, Genqiang; Guo, Xiangqian*; Harish-Chandra modules over generalized Heisenberg-Virasoro algebras. Israel J. Math. 204 (2014), no. 1, 447468.

[4]. Guo, Xiangqian; Liu, Genqiang*; Zhao, Kaiming Irreducible Harish-Chandra modules over extended Witt algebras. Ark. Mat. 52 (2014), no. 1, 99112.

[3]. Liu, Genqiang*; Zhao, Kaiming; Irreducible Harish Chandra modules over the derivation algebras of rational quantum tori. Glasg. Math. J. 55 (2013), no. 3, 677693.

[2]. Liu, Genqiang; Zhang, Yingbo*; Canonical forms of indecomposable modules over K[x,y]/(xp,yq,xy). Algebra Colloq. 18 (2011), no. 3, 373384.

[1]. Liu, Genqiang*; Zhao, Kaiming; Irreducible modules over the derivation algebras of rational quantum tori. J. Algebra 340 (2011), 2834.

Research Funding

1. Representations of Weyl type algebras and their applications in the representations of Lie algebras and quantum groupsNational Natural Science Foundation of China(11771122)2018-01 ----2021-12.

2. Representations of Infinite dimensional Lie algebras and representations of quantum groups,

Excellent youth project of Henan Provincial Nature Fund, 2020-10----2023-10.


Linear algebra, Lie groups, Lie algebras and its representations, basic algebra, Representations of groups.


PreNews: Zhongyuan Liu

NextNews: Shousheng Luo