Home > Events > Seminars > Content
Volume Growth of Translators and Bernstein Theorem

Source:   Author:  Date:2020-01-03  ClickTimes:

Speaker: Li Ma


In this talk, we first review some facts about mean curvature flow in the Euclidean space Rn+k . Then via a use of maximum principle for heat equation, we consider a height estimate under the volume growth of translators in Rn+1. We show that under some volume growth, the potential function of the translator has no bound from below. We also give a new proof of the Bernstein theorem about minimal surfaces. New questions are posed for related minimal surfaces in Rn+1 with singular metrics.

Time: January 8th15:30

Venue: Lecture Hall,1th Floor, School of Mathematics and Statistics

Speaker Introduction:

Li Ma is a professor and Ph.D. supervisor of University of Science &Technology Beijing, and a scholar of Beike Dingxin Talent Program. He mainly studies geometric analysis, partial differential equations and nonlinear analysis.